Peptides, Amino Acids and Proteins in Skin Care?

Editor's Note: Our regular columnist Mindy GoldsteinPh.D. welcomes the following "Tech Edge" contribution from colleague Karl Lintner, Ph.D., of Sederma/Croda.

From the column editor: The use of peptides with specific functions has increased significantly in personal care products. One is hard-pressed to find a formula on the shelf that does not list a polypeptide in the ingredient list. How are these peptides made? Where do the sequences originate? This month, I welcome Karl Lintner, Ph.D., of Sederma/Croda, to present basic information on the peptides used in skin care products.

Karl Lintner, Ph.D., is a technical advisor to Sederma and Croda Enterprise Technology. He received a degree in chemical engineering and his doctorate in biochemistry from Vienna University. From 1973 to 1983, he conducted research in biological peptides at the Nuclear Research Centre in Seibau, France, publishing in the literature of more than 30 papers in biochemistry and biotechnology—essentially on peptide activity. From 1983 to 1989, Lintner was laboratory manager, then marketing manager for product development and worldwide technical support with the Henkel Company, Duisburg, Germany. In 1990, he joined Sederma as technical director and introduced peptides, synthetic ceramides and the first biotech products as cosmetic ingredients and received numerous patents. From 1997 to the present, Lintner has been managing director of Sederma.

—Mindy Goldstein, Ph.D.

It is difficult today to find a cosmetic or personal care brand without a claim that at least some of its SKUs contain one or more peptides in their formulas. The concept of using active peptides in skin and hair care was slow to catch on but has gained considerable momentum in the industry during the past five years. It would thus be useful to clarify some of the concepts, ingredients and claims in connection with peptides in cosmetics.

The relationship of peptides to amino acids and proteins, as indicated by the curiously and specifically chosen title of this column, will become evident throughout this explanation.

The number of possible amino acids is theoretically infinite and practically quite large.

Definitions

Confusion reigns in regard to the use of some technical terms in this field. Because any discussion of cosmetic activities, benefits and claims must be based on precise language, this article begins with some definitions that readers with chemical and biochemical backgrounds may already know.

Amino acids: Amino acids are the building blocks of peptides and proteins. Their molecules have one thing in common: a carbon backbone with at least one amino (-NH) and at least one carboxyl (-COOH) group attached. This confers specific electrochemical or charge-related behavior to them, as well as the useful functionality of being able to link into chains; furthermore, the various amino acids are distinguished by the nature of their carbon backbone and the side chains that, in turn, confer additional functions, solubility and linking capabilities to these entities.

Peptides: Peptides are chains of at least two amino acids linked by the eponymous "peptide bond" between the carboxyl group of one and the amino group of the following amino acid. Oligo-

—Mindy Goldstein, Ph.D., received her doctorate in the area of UV and gamma radiation damage to DNA and DNA repair from New York University. She has been awarded patents in encapsulation and controlled release and has been involved in the cosmetic industry since 1945. She currently is the executive director of Research & Development, Patent Formulation Services, for The Estee Lauder Companies Inc. in Malibu, NY.

What Tech Edge topics would you like to see covered? Send your ideas to: CT_author@burren.com.

Southern Cross Botanicals

Beauty from down-under.

Australian Botanical Extracts

- Lilly Pilly
- Wild Peach
- Bush Plum
- Lemon Aspen
- Desert Lime
- Wattle
- Kakadu Plum
- Quandong
- Macadamia
- Tea Tree
- Kangaroo Paw
- Banksia Flower
- Spider Flower
- Wild Sandalwood
- Aniseed Myrtle
- Lemon Myrtle
- Wild Rosella
- Lemon Tea Tree
- Mountain Pepper

Visit Us At:
- SOC California Suppliers Day
- Distributor: ROSS Organic Specialties
- SEPAWA Würzburg/Germany
- Distributor: SRW GmbH
- scbotanicals.com.au

SOUTHERN CROSS is an Australian company specialising in the research and manufacture of certified botanical ingredients from Australian native plants. Our integrated operations range from large-scale plant propagation to sustainable plantations, specialty manufacturing to global distribution in over 30 countries. Our unique range of products includes:

- Natural Active Ingredients
- Australian Botanical Extracts
- Australian Essential Oils (Sandalwood, Marri, Myrtle)
- Australian Seed Oils (Macadamia, Jojoba, Avocado)
- Tea Tree Oil Derivatives (Oleoresin, Slow-release, Water-soluble)
- Natural Exfoliants & Oiled Herbs
- Certified Organic Ingredients

Southern Cross Botanicals Ltd, Pacific Highway, Knockrow NSW 2478, Australia, Tel: +61-2-66878828; Fax: +61-2-66878837.

26 | Cosmetics & Toiletries | www.CosmeticsAndToiletries.com

Vol. 122, No. 10/October 2007
amino acids are used without being clearly defined. Examples include the 20 amino acids, "essential" amino acids, and natural and non-natural amino acids.

The one important concept to understand is the strong correlation that exists between the amino acid sequence in the peptide chain and the resulting bioactivity. Most of these peptides act at precise cell receptors and trigger physiological responses in various cells and organs. Changes in the amino acids key components of the natural moisturizing factor (NMF), although, given their zwitterionic charged nature and low lipophilicity, they tend to remain at the surface of the stratum corneum and only act as water-binding molecules. Tyrosine and its derivatives such as acetyl-tyrosine or earyl-tyrosin are used as melanin precursors in Tanner’s accelerators.

From a cosmetic science point of view, peptides are far more interesting.

Amino Acids in Cosmetics

Amino acids have been used as ingredients for many decades, either as raw undefined mixtures of fully hydrolyzed proteins or isolated substances. The amino acids key components of the natural moisturizing factor (NMF), although, given their zwitterionic charged nature and low lipophilicity, they tend to remain at the surface of the stratum corneum and only act as water-binding molecules. Tyrosine and its derivatives such as acetyl-tyrosine or earyl-tyrosin are used as melanin precursors in Tanner’s accelerators.

From a cosmetic science point of view, peptides are far more interesting.

Amino Acids in Cosmetics

Amino acids have been used in cosmetics for many decades, either as raw undefined mixtures of fully hydrolyzed proteins obtained from collagen, elastin, keratin, wheat gluten or milk caseins, or as specifically chosen individual amino acids in pure, isolated forms.

In skin care, specifically chosen, purified, amino acids such as serine, threonine, alanine and proline are popular ingredients because they are key components of the natural moisturizing factor (NMF), although, given their zwitterionic charged nature and low lipophilicity, they tend to remain at the surface of the stratum corneum and only act as water-binding molecules. Tyrosine and its derivatives such as acetyl-tyrosine or earyl-tyrosin are used as melanin precursors in Tanner’s accelerators.

The one important concept to understand is the strong correlation that exists between the amino acid sequence in the peptide chain and the resulting bioactivity. Most of these peptides act at precise cell receptors and trigger physiological responses in various cells and organs. Changes in the amino acids key components of the natural moisturizing factor (NMF), although, given their zwitterionic charged nature and low lipophilicity, they tend to remain at the surface of the stratum corneum and only act as water-binding molecules. Tyrosine and its derivatives such as acetyl-tyrosine or earyl-tyrosin are used as melanin precursors in Tanner’s accelerators.

From a cosmetic science point of view, peptides are far more interesting.

Amino Acids in Cosmetics

Amino acids have been used in cosmetics for many decades, either as raw undefined mixtures of fully hydrolyzed proteins obtained from collagen, elastin, keratin, wheat gluten or milk caseins, or as specifically chosen individual amino acids in pure, isolated forms.

In skin care, specifically chosen, purified, amino acids such as serine, threonine, alanine and proline are popular ingredients because they are key components of the natural moisturizing factor (NMF), although, given their zwitterionic charged nature and low lipophilicity, they tend to remain at the surface of the stratum corneum and only act as water-binding molecules. Tyrosine and its derivatives such as acetyl-tyrosine or earyl-tyrosin are used as melanin precursors in Tanner’s accelerators.

The one important concept to understand is the strong correlation that exists between the amino acid sequence in the peptide chain and the resulting bioactivity. Most of these peptides act at precise cell receptors and trigger physiological responses in various cells and organs. Changes in the amino acids key components of the natural moisturizing factor (NMF), although, given their zwitterionic charged nature and low lipophilicity, they tend to remain at the surface of the stratum corneum and only act as water-binding molecules. Tyrosine and its derivatives such as acetyl-tyrosine or earyl-tyrosin are used as melanin precursors in Tanner’s accelerators.

From a cosmetic science point of view, peptides are far more interesting.

Amino Acids in Cosmetics

Amino acids have been used in cosmetics for many decades, either as raw undefined mixtures of fully hydrolyzed proteins obtained from collagen, elastin, keratin, wheat gluten or milk caseins, or as specifically chosen individual amino acids in pure, isolated forms.

In skin care, specifically chosen, purified, amino acids such as serine, threonine, alanine and proline are popular ingredients because they are key components of the natural moisturizing factor (NMF), although, given their zwitterionic charged nature and low lipophilicity, they tend to remain at the surface of the stratum corneum and only act as water-binding molecules. Tyrosine and its derivatives such as acetyl-tyrosine or earyl-tyrosin are used as melanin precursors in Tanner’s accelerators.

The one important concept to understand is the strong correlation that exists between the amino acid sequence in the peptide chain and the resulting bioactivity. Most of these peptides act at precise cell receptors and trigger physiological responses in various cells and organs. Changes in the amino acids key components of the natural moisturizing factor (NMF), although, given their zwitterionic charged nature and low lipophilicity, they tend to remain at the surface of the stratum corneum and only act as water-binding molecules. Tyrosine and its derivatives such as acetyl-tyrosine or earyl-tyrosin are used as melanin precursors in Tanner’s accelerators.
In fact, the number of possible amino acids is much higher than 20. It is theoretically infinite and practically quite large because one can always invent or imagine a new side chain. It is obtained by chemical means.

The so-called "natural" amino acids—those that have been identified in living organisms—are less than 35 of the more than 200 possible amino acids. Only those 20 amino acids are coded for in human DNA and used by human cells to build proteins such as enzymes, collagen, elastin, keratin, muscle myosin and actin (see Proteins and Cosmetics).

Finally, within those 20 coded amino acids, six are called "essential" amino acids because humans, contrary to other species, are not able to synthesize these six molecules from simpler building blocks. Therefore, humans must ingest these molecules in one way or another in order to survive.

Amino Acids and Cosmetics

Amino acids have the general chemical formula: H-NH-CHR-COOH; R being a side chain of variable nature (see Figure 1). Yet too often in the literature, certain amino acid terms are used without being clearly defined. Examples include: the 20 amino acids, "essential" amino acids, and natural and non-natural amino acids.

From a cosmetic science point of view, peptides are far more interesting.

Amino Acids in Cosmetics

Amino acids have been used in cosmetics for many decades, either as undifferentiated mixtures of fully hydrolyzed proteins obtained from collagen, elastin, keratin, wheat gluten or milk casein, or as specifically chosen individual amino acids in pure, isolated form.

In skin care, specifically chosen, purified, amino acids such as serine, threonine, alanine and proline, are used: these are popular ingredients because they are key components of the natural moisturizing factor (NMF), although, given their weakly charged nature and low lipophilicity, they tend to remain at the surface of the stratum corneum and act only as water-binding molecules. Tyrosine and its derivatives such as a-methyltyrosine or o-ethyl-tyrosine are used as melanin precursors in tanning accelerators.

Carnitine, creatine and taurine—all naturally occurring but not part of the 20 coded amino acids—are promoted as energy stimulating factors, co-factors or ingredients in analogy to nutritional supplement claims.

Peptides and Cosmetics

Far more interesting, from a cosmetic science point of view, are the peptides, especially those with defined sequence and structure possessing specific biological activity. It is well recognized that partial protein hydrolysates that are "rich in peptides" show some cosmetic activity at sufficiently high concentrations, however, their chain length, sequence, conformation, concentration, charge distribution and mechanism of action, if any, are unknown factors.

In contrast to these hydrolysates, synthetic peptides of defined chemical structure—that presently in-vogue—have quite a different history and use. Glutathione, a tripeptide with important biological function in humans as an antioxidant and in the transport of amino acids, was discovered in 1921. Since then, hundreds of oligopeptides have been isolated from biological sources, identified, synthesized and studied for biological activity. Among the better-known examples are oxytocin, vasopressin, angiotensin and bradykinin that release hormones such as TSH, ACTH, MSH, LHRH, substance P, pepin, enkephalin and endorphins.

The one important concept to understand is the strong correlation that exists between the specific amino acid sequence in the peptide chain and the resulting bioactivity. Most of these peptides act at specific cell receptors and trigger physiological responses in various cell types and organs. Changes in the amino acids composing the peptide almost always lead to changes in the potency, type or duration of the activity. An example of the high selectivity is the tripeptide composed of the amino acids glycine, histidine and lysine (Gly-His-Lys) sequence. This wound-healing property is observed through the stimulation of collagen synthesis in fibroblasts. In contrast, the Gly-His-Lys sequence has lytic activity on adipocytes.

The fabulous thing about peptides of this nature is that they act at nano-to-micromolar concentration, so long as they reach their target cells. Imagine looking more closely at the cosmetic aspects of peptide use, consider how these peptides work. The general scheme evokes a "key" and "lock" model whereby a peptide, arriving from blood, lymph, tissue diffusion or some other external source is recognized by a specific receptor molecule or protein in the cell membrane. The recognition is due to complementary three-dimensional structures, such as amino acid side chain entities, that fit into pockets of the receptor molecule, like keys into a lock. The binding of the peptide to the receptor then triggers conformational changes in this transmembrane structure, which leads to further cascade events in the cells interior biochemistry. The receptor thus acts like a transistor in electronics: a tiny amount of signal, i.e., the peptide, can lead to macroscopic events including collagen synthesis, lipid metabolism and nerve signal transmission within the cells.

Fundamental peptide biology research and pharmaceutical investigations into these mechanisms have in many cases confirmed the basic tenets of this model. A variant of the mode of peptide activity is found when the peptide seems to enter the target cell and then interacts with the cell nucleus directly, triggering genetic reactions (DNA transcription) and the like. Because of the signaling nature of the peptides, they are often called messengers of biological information.

Peptides act at a nano- to micromolar concentration.

The natural origin of peptides and their high potency at low concentration times, coupled to the rapid clearing of peptides in the bloodstream, are of great importance for their use in human applications: low dosage, little remanence and identity to endogenous molecules makes peptides a very safe and effective family of active ingredients, especially for cosmetics. Of course, any change in amino acid sequence from its original one, designed perhaps to enhance or modify activity, might require more detailed investigation on potential side effects. In the field of skin care, this aspect is particularly crucial.

Cosmetic aspects of peptide usage: The challenges to using peptides in cosmetic formulas are not negligible, however. The foremost is targeting and bioavailability (i.e., skin penetration) of oligopeptides whose nature and structure described do not easily reach their targets. Although low use concentrations of the usually expensive synthetic peptides allow the economic equation to work out for most skin care uses, detection of ppm levels of peptides in complex cream matrices is a challenge. Nevertheless, as stated in the introduction, peptides have become a main staple in skin care formulations because it has been made possible to overcome these hurdles.

Liposomes and PLGAs have shown that palmitoylation of short peptides improves the skin penetration behavior by a factor 100 to 1000, thus making it possible to achieve wrinkle reduction and other cosmetic effects even at 10 µM concentration.

Fluorescent tagging coupled to high performance liquid chromatography allows the detection of milligram (mM) quantities even in rich cosmetic textures.

What cosmetic activities, properties and claims could then be based on peptides? Foremost, the peptides...
derived from wound-healing research are targeted for matrix regeneration because they stimulate collagen, fibronectin, GAG synthesis and allow for wound repair, skin thickening and skin firming. A well-known example is the family of matricines, peptides that are released by the breakdown of structural proteins such as collagen, elastin and fibronectin, of which the pentapeptide Pal-ETTKS, the tripeptide Pal-GHK, and the hexapeptide Pal-Val-Gly-Val-Ala-Pro-Gly are prominent representatives.

Other interesting cosmetic activities include the modulation of melanin synthesis in melanosomes, either by stimulating or inhibiting the melanin production for accelerated tanning or so-called skin lightening/toning; the stimulation of lipolysis for slimming and anti-cellulite claims; and anti-inflammatory properties produced by reducing intercellular secretion and even neuronal activity that

For a concerted 100% high tech youth cure
2 pure tetrapeptides targeting specific proteoglycans*

AT THE DERMIS LEVEL: DERMICAN™ LS 9745
FOR A FIRM AND PLUMP SKIN
> A targeted objective: optimal collagen fibers functionality
> Via a specific anchoring small proteoglycan: LUMICAN

SHARP WEAPON AGAINST SKIN AGING

AT THE EPIDERMIS LEVEL: SYNiorage™ LS 9748
TO IMPROVE SKIN APPEARANCE AND FIRMNESS
> Stimulates SYNDECAN-1 synthesis, for a reinforcement of epidermal cohesion
> Improves the adhesion between epidermis and dermo-epidermal junction through collagen XVII

FOR "SENIOR SKIN" REFLECTING JOY IN LIFE

* A fundamental research study conducted by LS has enabled the identification of these two proteoglycans as keys to aging the synthesis of Luminic and Syndecan slows down with age.

Condenser-chamber TEWL
Product discrimination where others fail

Most accurate, most sensitive, most reproducible, most versatile
Quick calibration, traceable, independently verified
Sterile measurement caps: 3-17mm site diameters
Any site, any angle, anywhere

Closed-chamber convenience with unrivalled performance
AquaFlux Model AF200, ActiveX Windows Software with free updates, USB Interface, 3-year Warranty

BioX Systems Ltd
Southwark Campus
103 Borough Road
London SE1 0AA, UK

Tel: +44 (0)20 7815 7564
Fax: +44 (0)20 7815 7561
E-mail: sales@biox.biz
Web: www.biox.biz

Vol. 122, No. 10/October 2007

Cosmetics & Toiletries® magazine www.CosmeticsandToiletries.com

LABORATOIRES SÉBÉDROSIÉNIQUES
Institut du Sénologie

USA

Phone/Fax: (1) 215 628 1447 / 1450

Laboratoires Séricologiques - Division de Cognis France
E-mail: customer-service.ls@cognis.com
Website: www.laboratoires-sericologiques.com
care applications would need at least as much space to be discussed in detail. Briefly, proteins can be placed into four main categories: structural, functional, signal or defense molecules.

- **Structural:** Larger structural entities such as collagen, elastin, fibroectin, laminin, myosin, actin and many others participate in the building and maintenance of connective tissue of the three-dimensional arrangement of the organs that constitute the human body, including muscles and skin layers.

- **Functional:** Functional proteins, such as enzymes, of which thousands are present in low concentration within cells and the blood stream, can act as chemical catalysts that initiate, regulate and modulate all biochemical processes. Other functional proteins include transport molecules such as transferrin, hemoglobin, myoglobin (Figure 3) and lipoproteins.

- **Signaling:** Cytokines, chemokines, interferon and interleukins are smaller proteins that possess, like the oligopeptides, a signaling function, triggering a downstream cascade of events.

- **Defense:** Finally, antibodies are large protein structures with the specific function of defending the organism against invasion by foreign matter such as bacteria or viruses, allergens and the like.

Cosmetic applications of proteins: Are any of these protein categories useful for skin care applications? Collagen can be extracted in its native, non-hydrolyzed form from cow hide or fish skin and employed as a natural film former and water-binding molecule. Fibroectin, isolated from horse serum, was used for some time for similar purposes. Proteins of high molecular weight also can be obtained from wheat, rice, potatoes and other plants; they are used, for instance, as skin-tightening actives.

Certain enzymes have found some use in cosmetic formulas. The lactoperoxidase/glucose oxidase system, with its antimicrobial activity, was used as an aid in fighting acne-type symptoms on the skin but could also, at higher concentrations, be used in helping to preserve finished products against spoilage. Because of the stability concerns, the technology did not find widespread application.

Protecteolytic enzymes, lipolytic enzymes and more recently, heat- and UV-stable protective antioxidant enzymes* have found acceptance in skin care.

The other two categories, cytokines and antibodies, present too many challenges in relation to synthesis or extraction from animal tissue, toxicological and pharmacological concerns, to have made an impact in the field of skin care. Cytokines are often mentioned as being the mediators of certain cosmetic activities however, they are not used as ingredients.

*Enzymes (EVNS: Bio/che, Euroben, Ferment) is a product and trademark of Henderson, Farnham.

†Cytozyme (EVNS: Uopro) is a product and trademark of Henderson.

‡Sinecine (EVNS: Thermcoat, Hycare) is a product and trademark of Henderson.

Custom and specialized raw materials for dermo-pharmaceuticals and cosmetics

Vevy Europe can help you develop specialized ingredients for your skin treatment products. You can take advantage of the Vevy Europe expertise in pharmaceutical and cosmetic research.

- Functional ingredients from vegetable sources
- Antioxidants and anti-aging components
- Regulators of cutaneous transpiration
- The first complete substitute for lanolin
- Emollients with antiaging effect
- Dermapharmaceuticals obtained by synthesis
- Marine products, organic substances present in the sea
- Fractions of dehydrated honey
- The active elements of fibersin
- Rheological modifiers for emulsions
- Safe and effective emulsifiers
- Hair care actives
- Real moisturizers

You can't turn back the clock ... but, you can slow it down!

Lumistor™ and Resilen™-200 for Anti-wrinkling, Deep Moisturization and Renewed Skin Radiance!

For more information contact:

Kyowa Hakko USA Inc.
767 Third Avenue
New York, NY 10017
Phone: 212-319-5353
Fax: 212-421-1283
E-mail: inquiry@kyowa-usa.com
Website: www.kyowa-usa.com

Headquarters: Vevy Europe S.p.A. Via Serenissima 16, 16121 Genova, Italy Phone: +39 010 218 51 Fax: +39 010 218 52 25 E-mail: info@vevy.com

Vevy Europe Continental Unit S.A.: 2 rue de l’Héronne 1206 Geneva, Switzerland Fax: +41 22 347 51 55

North American Offices: United Wholesale Distributors

45 Fieldland Street, Brea, CA 92821-2411 • Phone: (631) 507-0800 • Fax: (631) 507-8867

Cosmetics & Toiletries® magazine www.CosmeticsAndToiletries.com

Vol. 122, No. 10/October 2007
Figure 3. Representation of myoglobin, a functional protein with a chain of 153 amino acids, presented to show the difference in size and structure of a protein as compared to an amino acid or a peptide.

Conclusion
In numerous articles, advertising copy and general media jargon, amino acids, peptides and proteins are too often bandied about as if they were a single entity of cosmetic ingredients with similar activity and usefulness. The present introduction aims to clarify the clear differences between these categories of chemicals, whatever their origin. During the past few years, it has become evident that peptides, if designed well, correctly chosen and intelligently employed, possess by far the greatest potential for beneficial cosmetic use because they have unambiguously, clearly defined specific activity. In addition they are analytically pure, biomimetic, biodegradable, nontoxic and nevertheless highly innovative. Most individual amino acids are too small and simple to show specific biological activity, and most proteins are too big, unwieldy and difficult to obtain to be considered as major players in the field of skin care ingredients.

Reproduction of all or part of this article is strictly prohibited.

References

HUMAN CLINICAL TESTING... AT ITS BEST.
Experience, Innovation and Dedication to the Highest Levels of Scientific Standards

Protocols developed for specific needs.

Essex Testing Clinic, Inc.
799 Bloomfield Avenue, Verona, New Jersey 07044
Phone: 973/857-9341 FAX: 973/857-9662
info@essextesting.com www.essextesting.com